
Bnusa — Full Engineering Case Study
Author: Yad Qasim

Role: Founder & Full-Stack Architect

Bnusa is a Kurdish-first digital publishing platform engineered as a secure, scalable, and performance-oriented web
application. This document presents a full architectural, technical, and engineering breakdown of the system. The
goal is not to describe features at a surface level, but to demonstrate engineering depth, system design reasoning,
security decisions, architectural tradeoffs, performance implications, and production-readiness considerations.



1. System Architecture Overview
Bnusa is architected as a decoupled full-stack application consisting of: - A Next.js frontend (App Router, server
components, edge OG routes) - A Node.js + Express backend (REST API, authentication, PDF generation) -
MongoDB database (text indexes, content persistence) - Backblaze B2 object storage (media & PDFs) - Socket.IO
real-time notification layer - Dockerized deployment for service isolation The frontend and backend are
independently containerized and communicate via secure HTTPS. JWT-based authentication is handled server-side
with cookie sessions.

[ Browser ]
     |
     v
[ Next.js Frontend ]  --->  [ Express API Server ]  --->  [ MongoDB ]
         |                         |
         |                         v
         |                   [ Backblaze B2 ]
         |
         v
   [ Edge OG Routes ]



2. Authentication & Security Engineering
Authentication uses Firebase ID token verification combined with server-issued JWT session cookies. The system
separates identity verification (Firebase) from session management (custom JWT). Key properties: - JWT signed
with HS256 - 14-day expiry - HTTPOnly + Secure cookie - CSRF double-submit cookie protection - Role-based
admin middleware

Sequence: Firebase Login Flow

Client -> Firebase: authenticate()
Firebase -> Client: ID Token
Client -> Backend: POST /auth/firebase (ID Token)
Backend -> Firebase Admin: verifyIdToken()
Backend: create session JWT
Backend -> Client: Set-Cookie bnusa_session

// sessionAuth.js
const token = jwt.sign(
  { userId, role },
  process.env.JWT_SECRET,
  { expiresIn: '14d' }
);

res.cookie('bnusa_session', token, {
  httpOnly: true,
  secure: true,
  sameSite: 'lax'
});



3. Publishing Workflow & Content States
Content in Bnusa moves through strict lifecycle states: draft -> pending -> published -> rejected. State transitions
are controlled by backend validation. Edit counts and timestamps allow moderation auditing. View increments use
atomic MongoDB $inc operations.

// Atomic view increment
Article.findByIdAndUpdate(
  article._id,
  { $inc: { views: 1 } }
);



4. Image Optimization Pipeline
Uploads are processed with a multi-layer validation system: 1. Multer MIME check 2. Magic-byte signature sniffing
3. Sharp WebP conversion (1200px width, quality 80) 4. Thumbnail generation (400px width, quality 70) 5. 1-year
cache headers at B2 level

Client -> Backend: POST /upload
Backend: validate MIME + magic bytes
Backend: sharp() -> webp + thumbnail
Backend: upload to B2
Backend -> Client: { imageUrl, thumbUrl, originalUrl }



5. Real-Time Notification Architecture
Socket.IO initializes with authenticated middleware. Each user joins a room: user:. Notifications are persisted in
MongoDB before emission. Online status is tracked using a Map>.

Event: new_comment

Backend: save Notification to DB
Backend: io.to('user:<id>').emit('notification', payload)
If offline: notification remains unread in DB



6. SEO & Metadata Engineering
Bnusa uses dynamic sitemap generation with force-dynamic configuration. Structured data includes Article, Review,
and Book schema types. Edge runtime generates Open Graph images on demand. Canonical URLs prevent
duplicate indexing.



7. PDF Generation System
PDF export uses Puppeteer in headless mode. Process: - Fetch book + chapters - Render full HTML template -
Embed Rabar Kurdish fonts via base64 - Generate light + dark versions - Upload to B2 - Update book document
with URLs

Client -> POST /pdf/generate
Backend: set pdf_status = generating
Backend: generateBookPDFs()
Puppeteer -> render HTML
Puppeteer -> page.pdf()
Backend -> upload to B2
Backend: update pdf_status = ready



8. Performance Metrics & Architectural Tradeoffs
Performance optimizations: - WebP conversion reduces average image size by ~35–50% - Thumbnail usage lowers
list-page LCP impact - MongoDB text index weights optimize relevance ranking - Edge OG routes reduce cold-start
cost vs server runtime Tradeoffs: - HS256 chosen over RS256 for simplicity (shared secret management) - Sharp
memory limit avoids OOM in containerized environment - PDF generation async to prevent request blocking - Text
search limited by MongoDB capabilities (no Kurdish stemmer)



9. Deployment & Production Hardening
Backend enforces environment validation at startup. Missing critical variables cause immediate process.exit(1).
HTTPS redirect enforced at server middleware. Helmet config enables strict CSP + HSTS preload. Docker restart
policy ensures service resilience.



10. Engineering Reflection & Founder Notes
Bnusa demonstrates full ownership of product lifecycle: architecture, backend engineering, frontend UX, security,
performance, real-time systems, SEO engineering, and document generation. This project reflects deep applied
knowledge of full-stack systems, production infrastructure, and real-world tradeoff management.


